
ThunderChain Test Access Process

Test Access Process

Register a developer's account

1. The developer calls the *Developer Registration* interface as part of the test access APIs.

2. Based on the email address (required) and callback address (not required) submitted by the developer
interface, the test platform sends an email to the developer that consists of service_id and secret.

3. **All subsequent test interface requests must come with such an email address and an md5 string value
created by joining the email address, service_id and secret. All interfaces of the test platform will verify the
md5.**

4. The interface does not provide additional query function. If the developer's information is missing, it
should be retrieved through the customer service process.

Call the recharge interface

1. The developer calls the *Test account recharge* interface as part of the test access APIs.

2. After the recharge interface has been successfully called, the test platform will transfer 1 LinkToken to the
address account submitted by the interface.

3. Because the blockchain environment for the test platform is completely independent, such a testing
LinkToken may be only used in the test environment and will be invalid if it is transferred into any other
blockchain environment.

4. **Each email address may initiate up to 10 transfer requests every day.**

Develop your contract application and high-level service

1. The developer develops a contract application and packages calls to contracts through high-level service
functions (implementation of App, H5, etc.).

2. Refer to Developer’s Guide to Xunlei Blockchain Competition Contract for contract development.

Deploy contracts to ThunderChain test environment

1. Neither the test nor the formal environment of ThunderChain provides procedures whereby transactions
may be sent to execute contracts directly through RPC connections. Contracts have to be published and
called by calling API interfaces.

2. The developer calls the contract publishing interface to deploy a contract to the ThunderChain test
environment.

3. **Because contract deployment is executed by the platform, you should avoid using msg.sender in the
contract constructor method. If you have to use msg.sender for the purpose of permission and caller
restrictions, you may use an argument to pass the user's address instead.**

Ex.:

```

contract HelloWorld {

address owner;

constructor(address ownerArg) public {

//owner = msg.sender;使用 ownerArg代替 msg.sender

owner = ownerArg;

}

}

```

```

contract HelloWorld {

address owner;

constructor(address ownerArg) public {

//owner = msg.sender; Use ownerArg instead of msg.sender

owner = ownerArg;

}

}

```

4. The contract publishing API interface requires inputs of contract bytecode and paramaters. Byetecode
comes from contract compilation. Params is coding that may be directly attached to bytecode for the purpose
of deployment after the parameter for the constructor follows sign.

You may use

[remix](http://remix.ethereum.org/#optimize=false&version=soljson-v0.4.23+commit.124ca40d.js) to create
a contract. The "input" of the transaction on detail of the console is the data for contract deployment.
However, to ensure compatibility with the input in the test environment and formal environment, the contract
bytecode in the input should be passed separately from the final params and sign.

![constructor](./img/constructor.png)

How to call a contract

A contract may be called by either of two means: Sending a transaction to call the contract by scanning a QR
code from the LinkToken Pocket app; initiating a transaction to call the contract by invoking LinkToken
Pocket from the service App.

Invoke LinkToken Pocket
Using API, LinkToken Pocket is invoked by a service App and passed to a transaction for contract call.

Call LinkToken Pocket from OneThing Cloud

otst://contract/?tx-
data=ZGVzYz3nlLXlvbFYWFhYJnRvPTB4MTIzNDU2Nzg5MDEyMzQ1Njc4OTAmdmFsdWU9MTIzLj
QwJmdhc2xpbWl0PTUwMDAwJmRhdGE9MHgwMTAyMDMwNDAwMDAwMDAwMDAwMDAwMD
AwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDA
wMDAwMDEmc2lnbj0wNEI3QTU1QzQ3NDQwRDk4NUE0NDgzNkZENTVFQkVCNw==&resource=d2
t5&x-source=wky&x-success=wky://x-callback-url/contractSuccess&x-error=wky://x-callback-
url/contractError&x-cancel=wky://x-callback-url/contractCancel&&cb-data=base64 encoded callback pass-
through parameter

Explanation
1. Contract execution service: otst://contract

1. Name of source app: resource=d2t5, decoded to "wky"

2. Callback prefix of source app: x-source=wky

3. Successful callback: &x-success=wky://x-callback-url/contractSuccess

4. Failed callback: &x-error=wky://x-callback-url/contractError

5. Cancelled callback: &x-cancel=wky://x-callback-url/contractCancel

6. &cb-data=abcdefg is directly returned upon callback.

8. Transaction information tx-
data=ZGVzYz3nlLXlvbFYWFhYJnRvPTB4MTIzNDU2Nzg5MDEyMzQ1Njc4OTAmdmFsdWU9MTIzLj
QwJmdhc2xpbWl0PTUwMDAwJmRhdGE9MHgwMTAyMDMwNDAwMDAwMDAwMDAwMDAwMD
AwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDA
wMDAwMDEmc2lnbj0wNEI3QTU1QzQ3NDQwRDk4NUE0NDgzNkZENTVFQkVCNw==

After being decoded, it consists of the following information

1. Payment address: &to=0x12345678901234567890

2. Number of LinkTokens paid: &value=123.4

3. Max. payment fee: &gaslimit=50000

&data=0x010203040001

4. Calling code
&data=0x010203040001

5. For title &desc=Movie XXXX

6. Signature of transaction: &sign=04B7A55C47440D985A44836FD55EBEB7

** Return (Successful)**

wky://x-callback-url/contractSuccess?cb-
data=abcdefg&hash=0x12345678901234567890123456789012&data=base64 encoded callback pass-
through parameter

** Return (Failed)**

wky://x-callback-url/contractError?x-source=otc&errorCode=1&errorMessage=message&data=base64
encoded callback pass-through parameter

** Return (Cancelled)**

wky://x-callback-url/contractCancel?x-source=otc&data=base64 encoded callback pass-through parameter

Contract call

Contract call is referred to as the call to a function whereby the status of the contract is changed. Transfer
may be made to the contract account together with the execution of the function. It is triggered by a user
request inputted through the user interface.

![contract_interactive](./img/contract_interactive.png)

**The steps are as follows: **

1. A third-party app receives user inputs and initiates the contract call process.

2. Using the service_id allocated by LinkToken blockchain, the user requests a prepay_id from the
blockchain backend.

3. After receiving the request, the backend generates a prepay_id to the third-party app.

4. The third-party app packages the transaction, which primarily consists of the contract address, gas_limit,
amount to be transferred, the function and parameter coding (ABI) for execution, signature, etc..

5. LinkToken Pocket app is invoked to send the transaction information to LinkToken Pocket.

6. LinkToken Pocket packages the transaction and sends it to the processing center for blockchain
transaction. Eventually, the transaction is forwarded to the blockchain server for handling.

7. The result of the request is returned to LinkToken Pocket.

8. LinkToken Pocket informs the third-party app of the result. (Interaction of contract call is completed)

** The third-party app may synchronize data to its backend services. (Third-party
functions)**

If the user provides any callback information, the callback center will inform the backend of the third-party
app after the blockchain backend has processed the contract call request. The interface of the third-party app
synchronizes information with its backend to present the post-transaction result.

